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ON THE JOHNSON-NEYMAN TECHNIQUE AND SCME

EXTENSIONS THEREOF™

by

Richard F, Potthoff
University of North Carolina

1. SUMMARY AND INTRODUCTION

When measurements on one criterion variable and two or more predictor
variables are available for the members of two groups (groups of classes or of
individuals, e.g.), the Johnson-Neymsn technique /75, 4, 17 may be used to obtain
a region of values of the predictor variables for which the null hypothesis of no
difference in expected criterion score between the two groups would be rejected
at the .Cﬁilevel (or at the ¢ level, if we want to be more general). Thus, for
any specific point P within this region of significance determined by the
Johnson-Neyman technique, the number O does not lie within the 95°/o confidence
interval for the difference in expected criterion score between the two groups
at point P , and hence one can be at least 95°/o confident that there 1s a true
difference between the two groups at point P; however, it does not follow that
ocne can state with 95°/o confidence that there is a non-zero difference between
the two groups simultaneously for all points in the region. A statement of this
latter type is related to simultaneous confidence bounds: if the experimenter
wvants a region atout which this sort of statement can be mede, then a modification

of the Johnson-Neyman technique is required, as will be described in Section 3.

Lrhis research was supported in part by Educational Testing Service, and
in part by the Mathematics Division of the Air Force Office of Scientific Research.
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An approach which is essentially similar to the region e.pronch, but which uses
simultaneous confidence intervals in lieu of getting a vegion plotted, is dis-
cussed in Secticn k.

The Johnson-Neymen technique was designed for a situetion in which there
are just two groups being compared. To hendle the case where there are more than
two groups, Section 5 develops a simple technique which is tased on simulteneous
confidence bounds for the differences between all possible pairs of groups.

Another extension of the Johnson-Neyman technique is dealt with in Section
6, where the case of more than one criterion variable is considered. Again the
aepprcach is simply that of simulteneocus confidence bounds, but differemnt tools
are used this time,

The techniques suggested in this paper all require the calculation of many
of the same gquantities which must be computed for the Jchnson-Neymen technique;
beyond this point, the remeining calculations required are of an elementary
nature in all of the techniques.

To stert off, Section 2 will briefly review the foundations of the Johnson-
Neyran technique itself, and will indicate how the technique should and should
not be used. -

2. THE JOHNSON-NEYMAN TECHNIQUE

We suppcsc that we have two groups of classes or of individuals, with ny

mermbers in the first grcup and n, mecbers in the second group. Zach member of

each group is measured cn each of r gpredictor (control) variables

Xl’ XZ, ceey Xr: let X1Jk denote the meesurement for the k-th membter of the

Jj-th group on the i-th predictor variadble (k =1, 2, ..., nJ; J=1,24=1, 2, E;éé}

..+, r). Each member of each group is also measured on the single criterion »

variable, and we will let ij denote this criterion meas-rement for the k-th ::::
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member of the j-th group. (If the members of the groups are classes rather

than individual students, then the Y k's and the X 's would of course

3 13k

be class average scores rather than individual student scores). In the model

we assume that the YJk's are normally, independently, and homoscedzstically
distributed, end that the exgectation of ij for given X's 1is cf the form
(2.1) r,(YJk) =ay+ blJ Xy * boy Xogg + ove LI S

(k=l,2,...,n;d=l)2) b

3

where the aj's and the bij's are wnknown regression parsmeters. ZfSOme kind
of attempt should be mede to check that the homoscedasticity assumption is at
least roughly satisfied. Two weys in which unequal variances could easily arise
are {a) the variances might be different for the two groups, i.e., the Ylk's

rmight have a variance lifferent from the Y., 's; and (b) if the different k-valuss

2
represent different classes of students, then radical differences in the class
sizes might cazuse appreciable heteroscedasticitx£7

In the original paper Zﬁ§7, the Johnson-Neyran technique was formulsted
for r = 2 predictor variatles. However, it hzs been extended explicitly (see
Avelson /17, e.g.) to cover the case where there is a general number (r) of
preaictor variables, us in the model (2.1). The essence of this develorment of

the Johnson-Neyran technique for generrl r nmay be surmerized as follows. Let

¢, (J =1, 2) bve an rxr matrix vhose general element 1s

h|

n
( g x
J i k=1

n
z X. X
k=1 ijk T3k

) 3 )
£ x

13k ik
(2.2) k=1

C. =
it n

J




Let uj(j =1, 2) be an rxl vector whose i-th element is

(2.3)

Then we

(2.4)

for the

is

(2.5)

and the

(2.6)

(2.8)

liow let

(2.9)

£ 23
(o R CF) )

n,
J
u, = Y X Y.
i k=1 ijk “jk nJ
write the rxl vector
R N SR
. = o cee = O u
J 13’ "2y’ I 3 J
estimates of the b-coefficients for j =1, 2.
n'j 2
o 2 my , 2 (k§1 ¥) 2 r A
se=>:zYJk-): — -ZZbiJ
j=1 k=1 J=1 J J=1 1i=1
2 2
error mean square is s = Se/f , where
2
£ =2 (a-1-1)
=1
(3 = 1,2) denote an rxl vector whose i-th element is
n
J
oy K
X,. = - .
i n
J )
define
n
ZJ Y,
- k=1 S
Y = —— .
J n
J
the rxl wvector
?
X = (Xl) X2, caey Xr)

u

The error sum of squares

13




5
dencte a set of values of the control variables. We would reject =t the ¢
level the hynothesis of no difference in expected criterion score between the

two groups at the point X (2.9) if

A' - . A AN
(‘er2 - b} xz) - ('Yl - b; xl) + (b2 -bl) X

(2.10) fia’
_];_ _1_, t ! =l 7 TRV W '
/ ) + 5 + (X* - xl)_cl (x-x1)+(x -1(2)c2 (x-xz) /sz
where tf'a 1s the (1 - -g) fractile of the t distriiation with £(2.6) degrees
?

of freedom. The inequality (2.10) defines a region {which we will call R) in the
r-dimensional space of the predictor variables; it is this region which 4s.the

Johnson-Neyren region of significance. We may re-write (2.10) in the form

F;d
+
o'>
[

[

A
+

Lo
o’'>
)
o>

[
Sor?
»
~

n

— A
(2.11) J ('?2 - b} X, -

2 e _l_ E_ 1 _F1 -l = R TRV P .
" o Se [ ¢ oagr (KRICT(R) « (RYCRT > 0 5

actually, there are still other ways of writing the inequality which defines R
(see /17, e.g.).

The Johnscn-Neyman region of significance can be plotted when r = 2, but the
situation l2ccmes much more troutlescme whem r > 2. Becszuse of this difficulty
in plotting R when 1r > 2, the usefulness of the Johnson-Neymea technigue tor
general r has been gquestioned.

There 15 a second possible trouble point regarding the Johnson-Neywan techni-
que which Lkas perhaps never teen sufficiently emphasized. As indicated in Section
1, we can be at least 95°/o confident (for «a = .05) that the two groups are

difrerent for any specified }ndividual point in R, but we cannot be 95°/o




6

confident that the two groups are different sirultaneously fer 211 points in R.
In scme cases one might desire a statement of the former kind, in othér cases

a statement cf the latter kind. For instance, if one is interested only in a
single specific cless of students (z2nd if the two groups, j = 1 and 2, represent
two curriculums, e.g.), then it would be legitimete to inquire whether the point
X (the set of control variable scores) for the class faells within the region R,

in order to determine whether the two curriculums rmay be assumed to have different
effects for thet class; however, Icr a purpose of this sort, it would appear to

te not cnly less difficult tut also more informative to obtein a confidence inter-

val for the true difference in effects between the two curriculums for that
class, rather than to urdertake the labor of plotting R. Ou the other hand, if
cne is interested in meking 2 959/0 confidence statement about an entire point-
set in the X-space (as wculd likely be the case if one were interested in over=
2ll educational policy for many clesses, iather them in a single class), then it
would not bte proper to use the Johnson-Neymen region R since the simultaneous
confidence coefficient for such a2 region would generzlly be under 950/0.

All of this suggests that perhaps scme small modification or extension of the
idea tehind the Johnson-Neyran technique might be appropriate. In the next two
sections we will su_gest two possible apprceches along these lines. First, Section
3 will indiczte one technique for obtaining a region (point-set) whose simultanesus
confidence coefficient is > 950/0. Second, Section 4 will present a confidence
interval approaeh which, in e certain sense furnishes all the infcrmation which
the regicn apprcach furnishes plus some more but which dces not provide us with
a region to be piotted; actuclly, a region approach, 1f interpreted in a certain

wey, is practically equivalent to & group of confidence statements snyway.




5. A "SIMULTANEOUS" REGICK

In this section we will present one technique for obtaining wh;t we will
call a "simultaneous" region of significance, i.e., a regicom (which we will call -
R') such that, with confidence > 95°/o , we can state that the two groups
(3 =1 and 2) are different simultaneously for all points in R'. In other
words, in the long run, anot more than 50/0 of such regions R' which are
calculated will contain any points at all for which the two groups are equ=l in
exyected criterion score. |

Probably a number of different techniques for obtaining a sirmultaneous region
could be devised. Ccmputationally, the technique to be presented here vears ar
extremely close resemblance to the Johnson-Neymen technique, and for this reason
is protably computationally simpler than most alternative techniques would be.
On the other hand, it is possible that scme alternative technique might produce

a region which wculd be "lerger" (in some sense) and therefore better in that

respect.

Our approach will utilize a simple argument based on the simultaneous cenfi-
dence bound methcd developed by Roy and Bose 1—7, Section 2.1, formla. (2.1.6)

especially/. Let us define

= - - [ N A1 Te
(3.1) dy = d21(x) = (a,-28))+ (b2 b1 )X ’
where ’oJ (3 =1, 2) is an rxl vector containing the r bia's. We may write
A A A A A A
= = - ' - 4
(3.2) a,) d,(X) (a, -8;) + (b} - b]) X ’

where




QO

( A = ‘Y. - Q' X
53) 2 30

Cx

for J =1, 2. Also we define

(G4 v, =vx) - -}1-5 (0= X o)t (X - X))

]

for J =1, 2. Now we are ready to utilize /7, formula (2.1.6)7 to establish
thet lOO(l-a)o/o simultaneous confidence intervals for the functions dEl(x)

for all possibtle points X in the r-dimensional X-space are given by

A
B - d ..2
(3.5) dzl(x) + j/(r+l)rr+l,f;a Yo%) + v, (X] S ’
vhere F .. denotes thc (l-) fractile of the F distribution with r+l
r+l,fa

and f degrees of freedom. If we exzmine (3.5), we can conclude that, with
simlteneous confidence coefficient > 100 (1-a)%/0, we can state that del(X) is

£ 0 (i.e., that the two groups ere different) for all points X such that

(3.6) [0 > (vd) B oo [va(X) 4 vy (X7 68 :

Thus (3.6) defines the sirultaneous region R',
Note that the defining inequality for the simltaneous region R' (3.6) is

tasically identical with the defining inequelity for the Johnscon-Neyren region

2

fiq 1D (2.11) is replaced by
He1

R (2.11), with the one exception that t

(r+1)F in (3.6). Hence the computationzl procedure for obtaining R' 1is

r+l,f;a
essentially the same as that for obtaining the Jchnson-Neyman region R.

As 1s the case with the Jchnson-Neyman regicn, the reglon R' will consist
of two parts: one part where the statement is made that d21(x) > 0, and another

rart containing thoce X's for which we state that dzl(x) < 0. Recognizing




these two separate parts is thus wore explicit than merely stating that

dgl(X) £ 0 throughout R'. As with the Johnson-leyran regicm, cne or both of
these two parts of R' mey in some cases be null (i.e., contain no points at
all).

It appears that the "simultaneous" region R' (3.6} will alweys be a (proper)
subset of the Johnson-lNeyman region R (2.11) (i.e., every point in R' will
&lsc be in R, but not every point in R will be in R'). Thus R' could turn
ocut to be "smeller" than we might like it to be. However, it has teen pointed
out (see Scheffé /8, p. 7L/, e.g.) that, vhen ve are dealing with simultanecus
confidence bounds, it may be most sensible to choose an « velue somevwhat
lerger then what we wculd custorarily choose for simple confidence tounds. Hence
the chcice of a larger-than-usuel o would result in R' not being-sc "small".

As alreedy indicated, the region R' (3.6) mey not be the most desirable
100 (l-a)o/o similtaneous region which can be found: if we examine more closely
the situation for r = 1, we will suspect that, for generzl r, it should some-
how ve possible for the region R' (3.6) to be improved upom (although such im-
provement might well be at the expense of increased computational difficulty).

For r =1, if ve write X;, = - (a2 - al)/(b12 - bll) for the value:of X, for
which dy(X) [i.e., d,(%)7 is O (ve assume b, # b)), thena 100(1-a)°/o
confidence region for X, (see Fisher_z-j, pp. 1h4-1467, e.g.) is specified by

the inequality

(1) [ ay(x) 7% < 2, [va(xy)) + vy(x,0) 7 o2 :

If we state that we are 100 (1-a) ®/o confident that X)o lies in the regicn

(3.7), this is equivzlent to stating that we are 1C0 (l-a) %/o confident that
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X0 does not lie in the complement of (3.7), which (in turn) is the same thing
as saying that we are 100(1-a)°/c confident that del(x) # 0 for all X such

that

(3.8) a0 7% > 2 [vX) + (%7 s :

But we note that (3.8) is the same as (3.6), except thet instead of 2Fy £iq

in (3.6) we have the aprarently smeller quantity F in (3.8). Hence R'

1,f5a
(3.6) can evidently be improved upon for r=1, and although unfertunately no

ready generalization of (3.8) for r>»1 /[ such as an inequality like (3.8) but with
t?;a replaced by r Fr,f;a for general r, e.g./ could be discovered, one would
still suspect from this that R' (3.6) could be improved upon for r > 1 also.
Z’We take note finally, however, of a curious fact. For the region (3.6), we

can state with > 100(1-a)°/o confidence not only that del(x) £ 0 for all

X satisfying (3.6), but more specifically that dal(x) >0 for all X satisfying
(3.6) Zfor which 321(3) > 0 and that d?_l(x) <0 forall X satisfying (3.6)

for which Qel(x) < 0., For the region (3.8), however, we apparently can state
with 100(1-a)%/o confidence only that del(x) # 0 for all X satisfying (3.8),
and we cannot make any more specific statement about the sign of del(x) with-

out causing the confidence coefficient to drop below lOO(l-a)o/o. This would be

a drawtack of using the region (3.8).7

L. SIMULTANEOUS CONFIDENCE INTERVALS
The Johnson-Neymen arproach and the simultaneous region approach which was
suggested in Section 3 both require that a region be cbtained and usually plotted.
As already indicated, this may not be an easy task, especially when r > 2. There-

fore 1t is appropriate to consider an alternative approach.
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In a certain sense, the confidence interval approach whick we are about
to suggest 1s almost equivalent to the region arprcach enyvey; for both the
region R (2.11) and the region R' (3.6) are essentielly tased on confidence
bounds to begin with (the former on simple confidence bounds, the latter on sirml-
taneous confidence bounds). The confidence bounds associated with the region R
(2.11) are simple confidence tounds on the function da(x) for s specified X:
for any individuel X, we can be 100(1-a)°/c confident that d?_l(x) lies with-

in the interval

A . T
(4.1) L C R PN A ¢ I N eI RV .

The relaticn between the Johnson-Neyran region R (2.11) and the confidence inter-
val formule (4.1) is simply this: the number O will fall cutside of the inter-
val (b.1) if and only 1f X 1ies in the region R (2.11) .

The ccnfidence bounds associated with the region R' (3.6} were actually
used as a step in the argument which developed (3.6), and are specified by the
simultaneous confidence interval formula (3.5). The number O will fall outside
of the interval (3.5) if and only if X 1lies in the region R' (3.6).

What we will now propose is that, in some situations, it may be more sensi-
ble to utilize the confidence intervals (4.1} or (3.5) in lieu of cbtaining the
regions (2.11) or (3.6) respectively. We have already notel the close relation
between the confidence intervals and the regions. Iz one respect, the confidence
interval approach actually gives more information than the region approach: the
former furnishes us with a specific confidence interval for du(x) for any X,
whereas the latter does not provide us with the interval but rather tells us only
(for every X) whether or not this confidence interval contains the value O. On

the other hand, though, the confidence interval approach does not furnish us
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explicitly wit- ~.ny graphicel "region of significance".

The simp e confidence interval (4.1), which is associuted with the Johnson-
Neymen region R (2.11), may be used (as was already indicated in Secticn 2)
when we want confidence bounds on dEI(X) for a single specific X. The use of
the confidence intcrval apprcach with respect to the sirultereous bounds (3.5),
however, requires scmewhat more discussion than the formule (U4.1) because there
are different ways in which (3.5) can be utilized; we mention some possibilities:

() Tbe inte.vals (3.5) could be calculated for a certain number of strate-
gically - piaced points in the X-space. Por example, & certain number of equally-
spaced values could be chosen for each one of the » control variables, and
(3.5) could then be calculated for all possible ccmbinations of these values,
thereby furnishing us with the intervals (3.5) for all the points on a sort of
r-dimensionzl grid in the X-space.

(b) We might learn something interesting by calculating (3.5) for the
(nl + n2) points in the X-space represented by the (xllk,lek,...,xrlk)'s

(k = 1,2,..., nl) and the (X (k = 1,2,...,!12)- The 1dea

1o’ X22k""’xr2k)'s
would be that these (nl + n2) points wculd in many cases be a reasonable cross-
section of the particular population of points in the X-space in which we weuld
be interested. PFurthermore, we might classify each of the (nl + n2) intervals into
one cf three groups: intervals lying wholly above 0, intervals lying wholly be-
lowv 0, and intervals which contain O Z’and the last group could te split into
two parts, if desired, according to whether Qal(x) >0 or <_§7. It might then
ve instructive to tally the number of intervals in each group.

(¢) We might simply have a specific list of points in the X-space for which

we wish to obteln simulteneous confidence intervals, where the points might (e.g.)

be the X-scores for 2 list of certain clesses (c¢” students) which we ere interested
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in and which need not be among the (nl + n2) classes appearing in the data.

5. THE CASE OF MORE THAN TWO GROUPS

The methods we have discussed so far have been for situations wherc there
are only twe groups (j =1 and 2). These two groups may represent (e.g.) two 5
different curriculums or two different teaching techniques. We now consider a
more general situation where there are g groups (j = 1,2,...,8) being compared
rather than just two. We will use the same notation and assumptions as before
/[ see particularly (2.1 - 2.4), (2.7 - 2.8), (3.3 - 3.4)7, but with the under-
standing that the subscript J may assume the values 1.2,...,8 instead of just
the values 1 and 2.

A total of % g(g-1) different possible pairs of groups can be chosen from
amcng the g groups. Let (J, J) be any such pair (we assume J > J for

definiteness). Then, generalizing (3.l), we can define

(5.1) d\m;-d”(x) = (aJ-aJ)+(b5-b3)x F>3) .

Thus, for the g-group situation, we are potentially interested in the ég(g-l)
differences de (5.1) rather than just in a single difference d21 (3.1).

Qur problem is to generalize the techniques available for the two-group
situation in order to obtain weys to handle the g-group situation. The idee
suggested here wi%} be & simple one which again will be tased on the simultanecus
conridence bound method given by Roy and Bose 1f7, Section 2227: we will obtain
simultaneous confidence bounds on all %g(g-l) possible d; 's .

If we are interested in a single specific X, then 100(l-a)°/o simultaneous

confidence intervals for dJJ(X) for all possible (Jj,J) but for this single X

are given ty

A
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A
where dJJ(X) is defined anslogously to (3.2), and vhere Sz
2

and f are defined
the sare as (2.5) and (2.6) respectively except with £ replaced wherever it
appears by g . If we are interested in simultaneousj;iunds for 11 X, then
lCO(l-a)o/oj=§imultaneous zonfidence intervals for de(x) for 211 possible (J,J)

and for all possible X are given by

2
A Se
(5'5) dJJ(x) : \/(r+1)(g-l)F(r+l)(g-l),f;a Jthx) + VJ(X) '? 2

where Sz end f are defined the same as for (5.2). The formulas (5.2) snd
(5.3) are both immediete consequences of /7, formula (2.1.6)7. Note that (5.2)
is 2 generzlization of (L.1), while (5.3) is a generalization of (3.5). Meny of
the remarks about the confidence intervel approach which were made in Sectinn

L can also be applied (with approprizte mcdificetion) to the confidence intervals
(5.2) and (5.3).

If & regilon cpproach is preferred to a confidence interval approach, it is
possible to obtain regions of significance corresponding to either (5.2) or (5.3).
However, if all %g(g-l) peirs (J, J) were considered, it would be necessary
/[ in the case of either (5.2) or (5.3)7 to obtain %g(g-l) different regions (i.e.,
one region for each comparison). Statements could be made with 100(1-a)°/o con-
fidence with respect to all ég(g-l) reglons simultaneously. The regions corres-

pondirg to (5.3), for example, are based on the inequalities

2]

2
(5:4) [, 077 > (+r 1)@ 1) g 100501y 250 L5 (K) + ¥400 7 2

and so (5.4) 1s 2 genernlization of (3.6) .
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€. THE CASE OF ¥ORE THAN ONE CRITERION VARIABLE

30 far we have considered only the case of a single criterion variatle, ij.
However, situaticns are scmetimes encountered where there are two or nore criterion
variables, For example, suppose that we have an experiment with three curriculums,
end suppose that each curriculum has a different test associated with it which is
custcrarily administered to the students 2t the end cf the course. In our ex-
periment, however, suppose that all three tests eare administered at the end of
the course to all classes in each of the three groups, in order to ottain all the
information which might te necessary for a fair comperison. Then the three tests
wculd constitute three different criterion variables.

Thus we are faced with the problem of extending the techniques described
earlier in the paper to the case af multiple criterion variables. Our mcdel
is now & multivariate one; insteed of (2.1) we have the model equaticn

(6.1) E(Ygg)) = agf) + bgg) X, +b(7)x + ...+b§§)x

3k T P23 Mesk rik

where the superscript { 1is the index referring tc the critericn variatle., We
suppose “hat there are p criterion variables, so that { =1,2,...,0. One
would ordinarily essume for eech fixed (Jj,k) that the p Ygg)'s follow 2 rulti-
variate normal distribution with unknown variance metrix EZ(pxp), élthough for
the particular technique which we ere about to propose it so happens thet it will
te sufficient to =ssume only that the univariate marginel distributions are normal
and hcrmoscedustic for each of the p variates.

To attack the problem of the miltiple criterion variables, we will start ty
supposing that we are tasically interested in obtaining simultaneous confidence

tounds on the differences
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G R A A R C o{0")x

for 211 (j, J) and for ell {, and either for all X or for a single specific
X. /[1In (6.2), bSQ) is of course & vector containing the bgg)'s 7

It .ould be valid to apply Roy's formula for simultanecus multiveriate con-
fidencs bounds (see /76, p. 101, formuls (1k.6.3)7, e.g.) here, but some rough
investigations indicete that an al*ernative technique protably provides shorter
confidence intervale in this particular cese., Ve are interested in confidence
bounds on a type of function (6.2) which is rather specialized in the sense that
eny single funciion (6.2) involves but cne value of {; and Roy's general formu-
la /6, formuls (14.6.3)7 eppears to be most efficient not for such relatively
specialized functiszns, but rather for functions involving perareters associated
+ith more thin one variete.

The techrique of Roy and Bose 1_7, Section 2.}7 vhich we employed to adven-
tage in both 3ection 4 and Section 5 cennot, of course, be appesled to again here,
because it applies only to a univariote situvation. The device we will suggest for
getting simultanecus bounds on the functions (6.2) is ceonceptuzlly a simple one,
and is tased on essentially tho szme idea which was employed by Dunn ng7: we
just generalize eny of cur previous confidence interval formulas by substituting
(a/p) for o (and attaching the superscripts { in the appropriate places), and
we end up with simultaznecus btounds which apply (simulteneocusly) to 2all p values
of ¢ .

This can te dore with eny of the four confidence interval formulas (h.l),
(3.5), (5.2), or (5.%),depending on our needs. For example, if we generalize
(5.3), we determine that 100(1-c)°/o simultznecus confidence intervals for

qgg)(x) (6.2) for 211 possible (j, J) and for all { and for ell possible X
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are given by
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e

A
6.3 ) . Visacan Nz SEaney

(r+1)(g-1),£; %

A A
where dég) (X) end Sz(f) are the same functicns of the Ygg)'s as dJJ(X)

end S

o

are (respectively) of the de's .

17, for the case of p criterion variables, a region approach is preferred
to a confidence intérval approach, this can be arranged in e manner analogous to
that employed in previcus sections. However, there will be p times as many
regions to obtain for the p-variate case as there would be for the corresponding
univariate cese.

Finally, a warning note should be sounded. As ovr techniques are adapted to
more and more complex situations (which is the way they huve developed during the
course of this paper), we mey in some cases become faced with wider and wider
cont'idence intervals and with smaller and smaller regions of significance. 1In
fact, confidence intervals might turn out to be so wide as to be useless, and
regions can be so small as to be useless. When this sort of thing happens, it
means that the sample sizes (the nJ's) are too small to furnish adequate infor-
metion. In general, it would appear that this problem of sample sizes being too
srall rmight erise more frequently with the more ccmplicated types of confidence
intervals and regions.
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